Approximation Algorithms for Domatic Partitions∗

نویسندگان

  • Saurav Pandit
  • Sriram V. Pemmaraju
  • Kasturi Varadarajan
چکیده

We prove a new structural property regarding the “skyline” of uniform radius disks and use this to derive a number of new sequential and distributed approximation algorithms for well-known optimization problems on unit disk graphs (UDGs). Specifically, the paper presents new approximation algorithms for two problems: domatic partition and weighted minimum dominating set (WMDS) on UDGs, both of which are of significant interest to the distributed computing community because of applications to energy conservation in wireless networks. Using the aforementioned skyline property, we derive the first constant-factor approximation algorithm for the domatic partition problem on UDGs. Prior to our work, the best approximation factor for this problem was O(log n), obtained by simply using the approximation algorithm for general graphs. From the domatic partition algorithm, we derive a new and simpler constant-factor approximation for WMDS on UDGs. Because of “locality” properties that our algorithms possess, both algorithms have relatively simple constant-round distributed implmentations in the LOCAL model, where there is no bound on the message size. In addition, we obtain O(log n)-round distributed implementations of these algorithms in the CONGEST model, where message sizes are bounded above by O(log n) bits per message.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the independent domatic partition problem in random geometric graphs - an experimental study

We investigate experimentally the Domatic Partition (DP) problem, the Independent Domatic Partition (IDP) problem and the Idomatic partition problem in Random Geometric Graphs (RGGs). In particular, we model these problems as Integer Linear Programs (ILPs), solve them optimally, and show on a large set of samples that RGGs are independent domatically full most likely (over 93% of the cases) and...

متن کامل

Finding Domatic Partitions in Infinite Graphs

We investigate the apparent difficulty of finding domatic partitions in graphs using tools from computability theory. We consider nicely presented (i.e., computable) infinite graphs and show that even if the domatic number is known, there might not be any algorithm for producing a domatic partition of optimal size. However, we prove that smaller domatic partitions can be constructed if we restr...

متن کامل

Energy Conservation in Wireless Sensor Networks via Domatic Partitions

Using a dominating set as a coordinator in wireless networks has been proposed in many papers as an energy conservation technique. Since the nodes in a dominating set have the extra burden of coordination, energy resources in such nodes will drain out more quickly than in other nodes. To maximize the lifetime of nodes in the network, it has been proposed that the role of coordinators be rotated...

متن کامل

Domatic partitions and the Lovász local lemma

We resolve the problem posed as the main open question in [4]: letting δ(G), ∆(G) and D(G) respectively denote the minimum degree, maximum degree, and domatic number (defined below) of an undirected graph G = (V,E), we show that D(G) ≥ (1−o(1))δ(G)/ ln(∆(G)), where the “o(1)” term goes to zero as ∆(G) → ∞. A dominating set of G is any set S ⊆ V such that for all v ∈ V , either v ∈ S or some nei...

متن کامل

Domatic partitions of computable graphs

Given a graph G, we say that a subset D of the vertex set V is a dominating set if it is near all the vertices, in that every vertex outside of D is adjacent to a vertex in D. A domatic k-partition of G is a partition of V into k dominating sets. In this paper, we will consider issues of computability related to domatic partitions of computable graphs. Our investigation will center on answering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009